高中数学集合的教案设计与反思(精华七篇)。
作为一位优秀的老师,教学是我们的任务之一,写教学反思可以很好的把我们的教学记录下来,那么写教学反思需要注意哪些问题呢?下面是小编帮大家整理的集合的教学反思,欢迎阅读,希望大家能够喜欢。
高中数学集合的教案设计与反思 篇1
集合这章内容,教学参考书上安排的课时为五课时,我们的导学案也是安排五课时,实际教学时,由于对学生的实际情况估计不足,第一课时的导学案用了两课时才完成。集合这一章的特点是概念不多,但这章所涉及到的内容很广,学生学习本章内容时,不仅要理解本章的概念,还要理解与本章内容相关联的其他内容,这些内容有初中学习过的内容、有生活中的方方面面的相关知识,再加上高中学习方法与初中不同,逻辑思维能力要求较高,因此学生感觉学起来比较困难。针对这种情况,我在实际教学时,首先要求学生准确理解概念,如:集合的元素具有三个性质:确定性、互异性、无序性。集合的关系、运算等都是从元素的角度定义的,所以解集合问题时,教会学生对元素的性质进行分析,反复训练,让学生通过实例体会这三个性质。
第二,掌握相关的符号语言、venn图,正确使用列举法、描述法表示集合,特别要注意用描述法表示集合时,集合中的元素是什么,这是一个教学难点。第二个难点是集合的运算—交集和并集。突破难点充分运用数形结合思想,集合间的关系和运算,以数形结合思想为指导,借助图形思考,可以使各集合间的关系直观明了,使抽象的集合运算建立在直观的基础上,使解题思路清晰明朗,直观简捷,有利于问题的解决。
第三,指导学生理解并掌握自然语言、符号语言、图形语言这三种语言,灵活准确地进行语言转换,可以帮助学生提高分析问题,解决问题的能力。
第四,集合问题涉及到的其他内容,遇到了讲透,不拓展。
高中数学集合的教案设计与反思 篇2
集合间的基本关系是在前面学习了集合的概念、表示方法及集合与元素的关系后来研究集合之间的一种关系,它为后面学好集合的运算起着非常重要的作用。
从事这一节教学时,我首先根据思考利用类比的思想引入集合之间有何关系,通过例子说明集合有包含相等等关系,引入本节课的内容。
讲解子集、相等、真子集、空集概念时,让学生认真读概念,理解概念中的关键字。通过反例深刻理解概念中关键字并记住。同时,对概念的三种语言进行点明,概念用文字语言,符号语言及图形语言有机结合,逐步使学生由文字语言向符号语言、图形语言过渡。
上课时我还注意将抽象概念与实例相结合,鼓励同学们积极发言,举例子来理解概念,尤其是空集的例子。学生大多举的是方程无解的例子。有的认为{0}是空集,组织学生讨论,让学生自己辩论后认为它不是空集,加深学生的理解。
最后,我与学生共同将子集、相等、真子集等的性质进行了总结,还通过一一列举得出例子的推广,n个元素组成的集合有个子集,个真子集,个非空子集等。
通过本节课教学,有以下想法:如果让我重上这节课,我是否可以写出本节课三大知识点?子集,相等,真子集让学生自学,通过例子、各小组讨论,讲解概念、关键字,得出各自的性质。同时我在课堂更大限度的还给学生,充分发挥学生的主动积极性。
高中数学集合的教案设计与反思 篇3
教材例1编排的意图是:借助学生熟悉的题材,通过统计表的方式列出参加语文小组和数学小组的学生名单,和实际参加这两个课外小组总人数不相符合引起学生的思维冲突,渗透并初步体会集合的相关思想,并利用直观图的方式求出两个小组的总人数。集合是比较系统、抽象的数学思想方法,针对三年级学生的认知水平,在这里只是让学生通过生活中容易理解的题材去初步体会集合思想,为后继学习打下必要的基础,学生只要能够用自己的方法解决问题就可以了。因此我设计本节课时,立足于培养学生良好的数学思维能力,从学生的生活经验和知识基础出发,创设问题情境,让学生通过观察、操作、实验、推理、交流等活动寻找解决问题的方法,从不同的方法中选择最优方案,在解决问题中初步体会数学方法的应用价值,初步体会集合思想。充分利用多媒体课件进行辅助教学,演示绘制集合圈,让学生直观理解重复现象。
这节课不足是我对学生的思维了解不够透彻,所以在巩固练习部分设计不够充分,还有对学困生照顾的面不到位,今后我要多站在学生的角度去思考,去设计教学预案,进一步改进教学中的不足。
高中数学集合的教案设计与反思 篇4
开学两周了,经过开学后的适应,教学工作已经逐步进入了正常轨道。其实说是适应,只是我的适应,孩子们并没有表现出所谓的"开学综合征",开学近两周他们都表现得很棒!本来刚开学,担心孩子们收不回心来,一直布置很少的一点家庭作业,甚至有时候只是布置预习而已。当然,这样做也许也确实让孩子们能逐渐进入学习状态,避免出现开学倦怠或反感情绪。
在知识方面,原来担心孩子们对方程会有不适应或抵制情绪,结果孩子们都表现不错。方程解法的繁琐并没有让孩子们感到厌倦,因为虽说解方程书写步骤较多,但规律明显,顺向思维不需要过多的思维过程,抓住关键词列方程就迎刃而解了。最近主要的问题是形如12-X=5或56÷X=14这样的方程,用等式的性质来解很别扭,而用传统的方法又怕孩子混淆。其实这个问题教材在设计时早有考虑,原则上这种类型的方程不做要求,因此课本上并没有出现这样的题目。但孩子们在解决问题时自己会列出这样的方程,只好临时先提醒孩子尽量避免列出X在减数或除数位置上的方程。这样做的目的并不是要刻意回避这种问题,而是考虑到孩子们对现在的方法还不够熟练,不宜教给他们另外一种全然不同的解法,这个问题且等孩子们熟练掌握了解方程的`方法后再说吧!反正教材是不要求做这种题的。
还有个问题就是在解决问题时,算术方法与列方程的选择。最近一直在学习列方程解应用题,所以孩子们想当然地每道题都列方程解答。教材上虽然有一道题目是指导孩子体验理解用算术方法与方程方法解决问题的区别,能直接套用公式或顺向思维列式的就直接用算术方法解决比较简捷,用逆向思维考虑的问题可以用方程解决比较简捷。可能是由于初学,或者因为没有养成认真分析数量关系的习惯,孩子们在这方面还比较困惑,需要在以后的教学中指导孩子们逐步理解和掌握。慢慢来,不要急。
高中数学集合的教案设计与反思 篇5
一、教学策略的选择:
1、以学生为中心,充分调动学生的学习积极性。
以“内因是事物发展的根本原因。”为理论基础。根据《集合》这节课在高中教材的基础地位,也是高中数学的第一课。首先,主要内容虽是对集合及创始人的一点材料。但在这里创始人康托,年青,开创,受挫,患病,科研,最后被认可。这曲折的一生与伟大的成就不得不令我们对他产生崇敬之情。尤其是在患精神病发作的间歇还能从事研究。他的执着的精神值得我们学习,同时也能激发出对集合这个要学习的内容求知欲。集合是什么令康托如此执着。然后,再向同学们简单的介绍集合在数学中的基础地位。让同学们感到学好这堂课的重要性。
2、从学生的经验出发,培养学生的总结规律的能力。
(举例子、总结) 根据认知心理学的理论,知觉对感觉信息的组织和解释功能主要依靠过过去的经验。因此,在学习集合的概念的时候,首先,根据“物以类聚,人以群分”的常理,让同学们举出生活中的一些例子,近而再举出数学中这样的例子,一是为总结集合的做前提,二是让同学们能体会到,数学知识来源于实践。然后,自然而然的结合这些能组成集合的例子对集合这个概念进行理解。
3、根据教学内容的特点,来选择不同的教学方法。
(自学,合作,师生互动,举例子,实际操作) 本节课的内容,多而杂。一些简单的,一看就能明白的,需要记忆的,就由同学们来自学。例如:集合的.表示方法,数集的记法,元素的概念,元素的表示方法,元素与集合的关系,集合的分类。都要求学生来自学。而对于元素的确定性这一难点,就设计“跳绳比较的同学能不能组成一个集合?”这个问题来让同学们讨论。而对于互异性这个难点,通过对学生对“互异”的理解,先做解释,然后,举出在使用电脑时,在同一个地址下不能保存两个完全相同的文件。又解决如果有相同的对象归入一个集合时怎么办?通过举例子“把1、1、0,三个数字组成的集合是什么样的呢?”再动手操作,把一个苹果,三个桔子,四个大枣归入一个集合(放到一个盒子里)。
4、根据学生的特点和教学内容,来多角度,多层次的选择练习题。(口答,笔答,判断,选择,解答)为了活跃课堂气氛,还选择了问答接龙,抢答等形式。
二、教学中的不足,及改进方法。
1、教学经验不足,对课堂的驭的能力还要加强练习。上课时,胆怯,口误经常出现,对课堂的语言组织能力更有待提高。
2、对于学生也要加强心理素质培训,不要出现在课上很简单的问题也解答不上来的局面。
3、数学教学不要局限于单纯的知识教学,同时也要进行思想道德教育,教书育人是不分的。
高中数学集合的教案设计与反思 篇6
教学目标:
1、理解集合的概念和性质。
2、了解元素与集合的表示方法。
3、熟记有关数集。
4、培养学生认识事物的能力。
教学重点:
集合概念、性质
教学难点:
集合概念的理解
教学过程:
1、定义:
集合:一般地,某些指定的对象集在一起就成为一个集合(集)。元素:集合中每个对象叫做这个集合的元素。
由此上述例中集合的元素是什么?
例(1)的元素为1、3、5、7,例(2)的元素为到两定点距离等于两定点间距离的`点,例(3)的元素为满足不等式3x—2> x+3的实数x,例(4)的元素为所有直角三角形,例(5)为高一·六班全体男同学。
一般用大括号表示集合,{?}如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}。则上几例可表示为...
为方便,常用大写的拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}
(1)确定性;(2)互异性;(3)无序性。
3、元素与集合的关系:隶属关系
元素与集合的关系有“属于∈”及“不属于?(?也可表示为)两种。如A={2,4,8,16},则4∈A,8∈A,32?A。
集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A记作a?A,相反,a不属于集A记作a?A(或)
注:1、集合通常用大写的拉丁字母表示,如A、B、C、P、Q...
元素通常用小写的拉丁字母表示,如a、b、c、p、q...
2、“∈”的开口方向,不能把a∈A颠倒过来写。
4
注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。
(2)非负整数集内排除0的集。记作NXX或N+ 。Q、Z、R等其它数集内排除0
的集,也是这样表示,例如,整数集内排除0的集,表示成ZXX
请回答:已知a+b+c=m,A={x|ax2+bx+c=m},判断1与A的关系。
高中数学集合的教案设计与反思 篇7
目标:
(1)使学生初步理解集合的概念,知道常用数集的概念及其记法
(2)使学生初步了解“属于”关系的意义
(3)使学生初步了解有限集、无限集、空集的意义
重点:
集合的基本概念
教学过程:
1、引入
(1)章头导言
(2)集合论与集合论的创始者—————康托尔(有关介绍可引用附录中的内容)
2、讲授新课
阅读教材,并思考下列问题:
(1)有那些概念?
(2)有那些符号?
(3)集合中元素的特性是什么?
(4)如何给集合分类?
(一)有关概念:
1、集合的概念
(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象。
(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。
(3)元素:集合中每个对象叫做这个集合的元素。
集合通常用大写的`拉丁字母表示,如A、B、C、……元素通常用小写的拉丁字母表示,如a、b、c、……
2、元素与集合的关系
(1)属于:如果a是集合A的元素,就说a属于A,记作a∈A
(2)不属于:如果a不是集合A的元素,就说a不属于A,记作
要注意“∈”的方向,不能把a∈A颠倒过来写。
3、集合中元素的特性
(1)确定性:给定一个集合,任何对象是不是这个集合的元素是确定的了。
(2)互异性:集合中的元素一定是不同的
(3)无序性:集合中的元素没有固定的顺序。
4、集合分类
根据集合所含元素个属不同,可把集合分为如下几类:
(1)把不含任何元素的集合叫做空集Ф
(2)含有有限个元素的集合叫做有限集
(3)含有无穷个元素的集合叫做无限集
注:应区分符号的含义
5、常用数集及其表示方法
(1)非负整数集(自然数集):全体非负整数的集合。记作N
(2)正整数集:非负整数集内排除0的集。记作N*或N+
(3)整数集:全体整数的集合。记作Z
(4)有理数集:全体有理数的集合。记作Q
(5)实数集:全体实数的集合。记作R
注:
(1)自然数集包括数0。
(2)非负整数集内排除0的集。记作N*或N+,Q、Z、R等其它数集内排除0的集,也这样表示,例如,整数集内排除0的集,表示成Z*
课堂练习:
教材第5页练习A、B
小结:
本节课我们了解集合论的发展,学习了集合的概念及有关性质
课后作业:
第十页习题1—1B第3题